МГАПИ
Реклама
Навигация
Администрация Студентам Абитуриентам Форум Новости Карта сайта Создатели
Лекция 12

Назад Содержание

12.2 . Принцип работы лазеров

Практическое инверсное состояние среды было осуществлено в 1960 г. в принципиально новых источниках излучения - оптических квантовых генераторах или лазерах. В 1964 г. за фундаментальные работы по квантовой электронике советским ученым Басову Н.Г., Прохорову А.М. и американскому ученому Ч. Таунсу были присуждена Нобелевская премия.

Примером создания активной среды с инверсией населенностей может служить трехуровневый лазер, идея которого была предложенна Басовым и Прохоровым в 1955 г. За счет энергии накачки (например, благодаря вспышкам импульсной ксеноновой лампы) атомы среды переходят из состояния 1 в состояние 3, показанное стрелкой Е13 (см. рис. 2).

Время жизни уровня 3 очень мало (~10-8c). В течение этого времени некоторые электроны перейдут спонтанно с уровня 3 на уровень 1. Однако большинство атомов перейдет на метастабильный (относительно устойчивый) уровень 2. При достаточной мощности накачки число атомов, находящихся на уровне 2, становится больше числа атомов на уровне 1. Следовательно, возникает инверсия населенностей.

Излученный при спонтанном переходе 2-1 фотон вызывает вынужденное испускание дополнительных фотонов, соответствующих переходу Е21, которые в свою очередь вызовут также вынужденное излучение и т.д.

Полученное таким образом вынужденное излучение было использовано для генерации когерентных световых волн. Чтобы активное вещество превратить в генератор световых колебаний, надо осуществить обратную связь. Необходимо, чтобы часть излученного света все время находилась в зоне активного вещества и вызывала вынужденное излучение все новых и новых атомов. Для этого активное вещество, например, цилиндрический кристалл рубина, легированного атомами хрома, помещают между двумя параллельными зеркалами S1 и S2 (см. рис. 3),

плоскости которых перпендикулярны к оси цилиндра. Тогда луч света, претерпевая многократные отражения от зеркал S1 и S2, будет проходить много раз через активное вещество, усиливаясь при этом в результате вынужденных переходов атомов с высшего энергетического уровня Е2 на более низкий уровень Е1. Получается открытый резонатор, представляющий собой в сущности интерферометр Фабри-Перо, только заполненный активной средой.

Такой резонатор будет не только усиливать свет, но также коллимировать (получать пучок параллельных лучей) и монохроматизировать его. Коллимация происходит за счет того, что лучи, идущие параллельно оси цилиндра, будут проходить через активное вещество туда и обратно неограниченное число раз и максимально усилятся. Лучи, идущие наклонно, в конце концов попадут на боковую стенку цилиндра, где они рассеются или выйдут наружу, оставаясь практически неусиленными. Конечно, строго параллельные лучи получить нельзя. Этому препятствует дифракция света. Угол расхождения лучей принципиально не может быть меньше dq »l/D, где D - ширина пучка. Полученное излучение будет практически монохроматичным. Отклонение от монохроматичности возникает за счет неидеальности отражающих поверхностей зеркал и того, что энергетические уровни Е1 и Е2 и спек тральные линии, возникающие при переходе между ними, не бесконечно тонкие, а имеют конeчную ширину .

Лазерное излучение обладает следующими свойствами:

  1. Время когерентности составляет t » 10-3 с , что соответствует длине когерентности l ког = С t ког » 105 м, т.е. в 107 раз выше, чем для обычных источников света.
  2. Строгая монохроматичность : Dl < 10-11 м.
  3. Большая плотность потока энергии » 1010 Вт/м2.
  4. Очень малое угловое расхождение в пучке. Например, можно получить на лунной поверхности, облучая ее с Земли, пятно диаметром 3 км. Луч хорошего прожектора осветил бы поверхность диаметром » 40 000 км.

Лазеры имеют многочисленные применения в технике для сварки, резки и плавления металлов, в медицине - как бескровные скальпели, при лечении разных болезней. Лазерная локация позволила измерить скорость вращения планет и уточнить характеристики движения Луны и Венеры. Лазеры используются в волоконно - оптических линиях связи для передачи и обработки большого объема информации. Наконец, применяя лазеры для нагрева плазмы, пытаются решить проблему управляемого термоядерного синтеза.

Применения лазеров столь обширны, что даже их перечисление в объеме данной лекции просто невозможно.

Назад Содержание

Hosted by uCoz